© 2001 Fairchild Semiconductor Corporation

	FDFS6N303	Rev. D

G G D 4 5 **SO-8 MOSFET Maximum Ratings** $T_{A} = 25^{\circ}C$ unless otherwise noted Symbol Parameter FDFS6N303 Units Drain-Source Voltage $V_{\rm DSS}$ 30 V V_{GSS} Gate-Source Voltage ±20 V I_{D} Drain Current - Continuous 6 А (Note 1a) - Pulsed 30 P_{D} 2 Power Dissipation for Dual Operation W Power Dissipation for Single Operation 1.6 (Note 1a) 0.9 (Note 1c) °C $\mathsf{T}_{\mathsf{J}},\mathsf{T}_{\mathsf{STG}}$ Operating and Storage Temperature Range -55 to 150 Schottky Diode Maximum Ratings $T_a = 25^{\circ}C$ unless otherwise noted V_{RRM} Repetitive Peak Reverse Voltage 30 V 2 Average Forward Current (Note 1a) А L

SuperSOT[™]-8

The MOSFET and Schottky diode are isolated inside the package. The general purpose pinout has been chosen to maximize flexibility and ease of use. FETKEY products are particularly suited for switching applications such as DC/DC buck, boost, synchronous, and non-synchronous converters where the MOSFET is driven as low as 4.5V and fast switching, high efficiency and small PCB footprint is desirable.

> SuperSOT[™]-6

n

D С

С

Features

SO-8

A

А 2

S 3

1

- $\label{eq:constraint} \begin{array}{c} \bullet \ \mbox{6 A, 30 V. R}_{\rm DS(ON)} = 0.035 \ \Omega \ \ \mbox{@ V}_{\rm GS} = 10 \ \mbox{V}. \\ R_{\rm DS(ON)} = 0.050 \ \ \mbox{@ V}_{\rm GS} = 4.5 \ \mbox{V}. \end{array}$
- V_F < 0.28 V @ 0.1 A V_F < 0.42 V @ 3 A V_F < 0.50 V @ 6 A.
- Schottky and MOSFET incorporated into single power surface mount SO-8 package.
- General purpose pinout for design flexibility.

SOT-223

Ideal for DC/DC converter applications.

FAIRCHILE

SEMICONDUCTOR TM

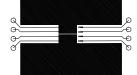
FDFS6N303 FETKEY N-Channel MOSFET with Schottky Diode

General Description

SOT-23

Fairchild Semiconductor's FETKEY technology incorporates a high cell density MOSFET and low forward drop (0.35V) Schottky diode into a single surface mount power package. October 2001

SOIC-16

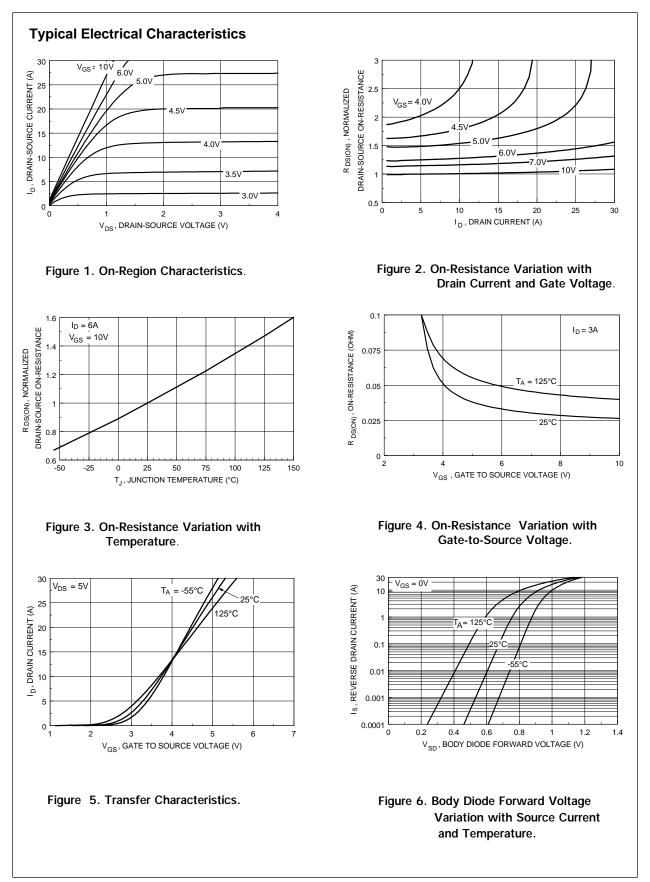

8 С

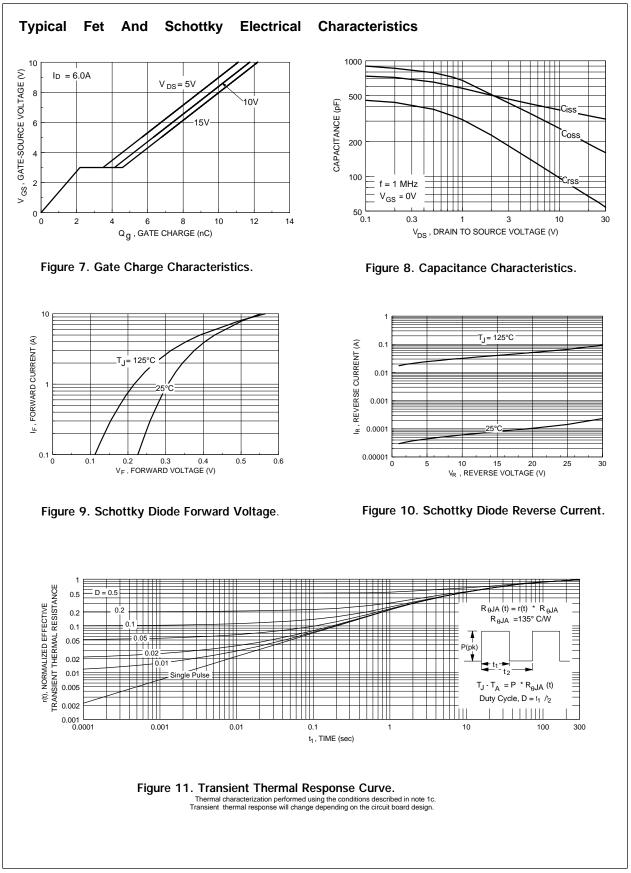
7

С

D 6

					_		
Symbol	Parameter	Conditions		Min	Тур	Max	Units
3V _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 250 \mu A$		30			V
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$				1	μA
			T _J =125℃			20	μA
GSSF	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
GSSR	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
/ _{GS(th)}	Gate Threshold Voltage	$V_{\rm DS} = V_{\rm GS}, \ I_{\rm D} = 250 \ \mu A$		1	1.7	3	V
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 6 \text{ A}$			0.025	0.035	Ω
		$V_{GS} = 4.5 \text{ V}, \ I_{D} = 4.8 \text{ A}$			0.043	0.05	1
) _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, \ I_{D} = 6 \text{ A}$			12		S
D(ON)	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$		15			Α
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$			350		pF
Coss	Output Capacitance	f = 1.0 MHz			220		pF
P _{rss}	Reverse Transfer Capacitance				80		pF
ک ^a	Total Gate Charge	$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 6 \text{ A}, \text{ V}_{GS} = 10 \text{ V}$			12	17	nC
D(on)	Turn - On Delay Time	$V_{DD} = 10 V, I_{D} = 1 A,$			7.5	15	ns
r	Turn - On Rise Time	$V_{GS} = 4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$			12	25	ns
D(off)	Turn - Off Delay Time				13	25	ns
f	Turn - Off Fall Time				6	15	ns
IOSFET D	RAIN-SOURCE DIODE CHARACTERISTICS AN	ID MAXIMUM RATINGS		Į			
6	Maximum Continuous Drain-Source Diode Fo	orward Current				1.3	А
/ _{sp}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 1.3 A (Note 2)			0.8	1.2	V
СНОТТК	Y DIODE CHARACTERISTICS	1		1			
3 _v	Reverse Breakdown Voltage	I _R = 1 mA		30			V
R	Reverse Leakage	$V_{\rm R} = 30 \text{ V}$				0.5	mA
	Forward Voltage	I _F = 0.1 A				280	mV
		$I_{\rm F} = 3 \text{A}$				420	-
		$I_{\rm F} = 6 \text{A}$			500		
HERMAL	CHARACTERISTICS						
R ^{eja}	Thermal Resistance, Junction-to-Ambient (Note 1a)		e 1a)	78			°C/W
R ^{enc}	Thermal Resistance, Junction-to-Case	Se (Note 1)		40		°C/W	
Notes: I. R _{eJA} is the	sum of the junction-to-case and case-to-ambient thermal resista by design while R_{weak} is determined by the user's board design.	nce where the case thermal reference	is defined as the s	older mour	ting surface	of the drain p	bins. R _{euc} i





b. 125°C/W on a 0.02 in² pad of 2oz copper.

Scale 1 : 1 on letter size paper 2. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2.0%.

FDFS6N303 Rev. D

FDFS6N303 Rev. D

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation[™] UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.	
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.	
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.	
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.	
	In Design First Production Full Production	